TCO( Transparent Conductive Oxide) 薄膜最早出现在20 世纪初,1907年Badeker首次制成CdO透明导电膜,从此引发了透明导电膜的开发与应用,1968年InSn氧化物和InSn合金被报道,在其理论研究和应用研究引起广泛的兴趣。这些氧化物均为重掺杂、高简并半导体,半导体机理为化学计量比偏移和掺杂,其禁带宽度一般大于3eV ,并随组分不同而变化,它们的光电性能依赖于金属的氧化状态以及掺杂剂的特性和数量。
ITO薄膜有复杂的立方铁锰矿结构,最低电阻率接近10^- 5Ω·cm 量级,可见光范围内平均光透过率在90%以上,其优良光电性质使之成为具有实用价值的TCO薄膜。
ITO透明导电膜除了具有高可见光透过率和高电导率,还具备其它优良的性能,如高红外反射率、与玻璃有较强的附着力、良好的机械强度和化学稳定性、用酸溶液湿法刻蚀工艺容易形成电极图等,被广泛地应用于平板显示器件、微波与射频屏蔽装置、敏感器件和太阳能电池等很多领域。特别是近年来液晶等平板显示器件的崛起,更促进了ITO薄膜的研究和需求。
ITO薄膜的导电机制和特性
In2O3是直接跃迁宽禁带半导体材料,其晶体结构是立方铁锰矿结构。由于在In2O3形成过程中没有构成完整的理想化学配比结构,结晶结构中缺少氧原子(氧空位) ,因此存在过剩的自由电子,表现出一定的电子导电性。同时,如果利用高价的阳离子如Sn掺杂在In2O3 晶格中代替In^3+的位置,则会增加自由导电电子的浓度,进而提高氧化铟的导电性。在ITO薄膜中,Sn一般以Sn^2+或Sn^4+的形式存在,由于In在In2O3中是正三价,Sn^4+的存在将提供一个电子到导带,相反Sn^2+的存在将降低导带中电子的密度。另外,SnO自身呈暗褐色,对可见光的透过率较差。在低温沉积过程中,Sn在ITO中主要以SnO的形式存在,导致较低的载流子浓度和高的膜电阻。经过退火处理,一方面能促使SnO向SnO2转变,使薄膜进一步氧化,另一方面促使薄膜中多余的氧脱附,从而达到降低膜电阻,提高膜的可见光透过率的目的。
ITO透明导电膜的特性:
⑴导电性能好,电阻率可达10^- 4Ω·cm ;
⑵可见光透过率高,可达85 %以上;
⑶对紫外线具有吸收性,吸收率≥85 %;
⑷对红外线具有反射性,反射率≥80 %;
⑸对微波具有衰减率,衰减率≥85 %;
⑹膜层硬度高、耐磨、耐化学腐蚀;
⑺膜层加工性能好,便于刻蚀等。
ITO薄膜的制备方法及工艺
可以用来制备ITO薄膜的成膜技术很多,如磁控溅射沉积 、真空蒸发沉积和溶胶- 凝胶( Sol -Gel)法等。
3.1 磁控溅射沉积
磁控溅射沉积可分为直流磁控溅射沉积和射频磁控溅射沉积。
直流磁控溅射是目前应用较广的镀膜方法,一般使用导电铟锡合金靶,溅射室抽真空后除了要通入惰性气体Ar ,还要通入反应气体O2 。溅射的基本过程:靶材是需要溅射的材料作为阴极,作为阳极的衬底加有数千伏的电压。在对系统预抽真空后,充入适当压力的惰性气体,例如Ar ,作为气体放电的载体,和少量O2作为反应气体,总压力一般处于10^- 1~10Pa 范围内。在正负电极高压作用下,极间的气体原子将大量电离,电离过程使Ar原子电离为Ar+离子和可独立运动的电子,其中电子飞向阳极,带正电荷的Ar+离子在高压电场的加速作用下高速飞向作为阴极的靶材,并在与靶材的撞击过程中释放出能量,撞击的结果之一就是大量的靶材表面原子获得相当高的能量,使其脱离原晶格束缚而飞向衬底,和高活性的O等离子体反应并沉积在衬底上形成ITO薄膜。
溅射成膜后一般要进行热处理。针对不同的成膜工艺,可以有两种方式。若沉积膜为缺氧、不透明的ITO膜,则一般应在氧气气氛或空气等氧化性气氛下进行热处理;反之若所沉积膜含氧较多、透明度高而电导率较低,则应该在真空或氮氢混合气还原气氛下进行。考虑到工业生产中应尽可能防止铟锡合金靶“中毒”,提高成膜速率以及基片温度不宜取得过高等要求,使沉积膜处于缺氧状态是一种较好的选择。
该工艺适合进行连续镀ITO膜层, ITO膜具有膜层厚度均匀、易控制、膜重复性好、稳定、适于连续生产、可镀大面积、基片和靶相互位置可按理想设计任意放置、可在低温下制取致密的薄膜层,该工艺适用于大规模工业化生产,是目前应用最广的镀膜方法。需要改善的是该工艺对设备的真空要求较高;膜的光电性能对各种溅射参数的变化比较敏感,因此工艺调节比较困难,同时靶材的利用率也较低(20%左右) 。
射频磁控溅射沉积使用了射频电源来解决直流磁控溅射沉积绝缘介质薄膜时存在的“液滴”、异常放电等问题。使用绝缘的铟锡陶瓷靶沉积ITO膜对工艺调节比较简单,制备的ITO膜的成分和靶材的成分基本一致,但陶瓷靶的制作工艺复杂、价格昂贵,同时射频溅射沉积速率低,基片升温高(对基片的要求高) ,射频电源效率低,设备复杂,且射频辐射对工作人员的健康也有相当的危害。
在镀膜工艺生产时, ITO膜主要特性是透明和导电,影响这两个指标的最主要工艺参数有溅射电压、沉积速率、基片温度、溅射总压、氧分压及靶材的Sn/ In组分比(一般是1/9) 。
3.2 真空蒸发沉积
传统的真空蒸发法广泛地被应用于制备包装用的铝膜和各种光学薄膜等生产中,由于它具有设备简单、沉积速率高的优点,这种方法也可用于制备ITO 膜。
一种作法是直接加热蒸发In2O3和SnO2的混合膜料,由于膜料的蒸发温度太高,因此必须采用电子束轰击加热,而不适合在工业化生产中应用。另一种作法是使用电阻加热蒸发舟蒸发熔点低的In和Sn混合料,同时反应室中通入氧气,通过反应生成ITO膜。这种方法设备简单、成本低。但要得到性能优良的膜,沉积时基片必须加热到较高的温度,并且必须进行热处理。
近年来,为了提高膜的质量和降低基片温度,发展了等离子体辅助蒸发制备ITO膜的方法 ,即在真空室中增设电极,施加直流电压,形成直流辉光放电等离子体。由于等离子体对基片的轰击和对膜料分子的活化作用,提高了膜的质量,降低了基片温度。但是基片温度仍然维持在200 ℃以上,而且由于直流辉光放电条件的限制,氧分压必须维持在100Pa以上(在较低的氧分压下,放电将熄灭)。我们知道决定ITO膜电学性能的最主要的参量之一是氧空位的浓度,低的氧分压有可能形成高浓度的氧空位,以获得高的电导率。
3.3 溶胶- 凝胶(Sol-Ge) 法
溶胶-凝胶法是制备高性能颗粒、纤维和薄膜的新型方法,80年代初将溶胶-凝胶法应用于镀ITO膜,将异丙醇铟[In(OC3H7)3]和异丙醇锡[Sn(OC3H7 4]溶于酒精,超声混合成溶胶,再用旋转法或提拉法镀在玻璃表面,陈化后进行400~500℃的热处理除去有机成分,然后在还原气氛中冷却到200℃以下。用溶胶-凝胶法可以镀10~12m^2大面积的膜,以制备低辐射(LE)玻璃与中空玻璃。
此法易于控制薄膜的成分,可以在分子水平控制掺杂,适合掺杂水平要求精确的薄膜,同时可使原材料在分子水平紧密结合,薄膜高度均匀,通过选择溶剂、调整浓度、添加催化剂,可以容易地控制溶胶性质,控制膜厚度,提拉法还可以双面镀膜。
总之,溶胶- 凝胶法无需真空设备,工艺简单,适用于大面积且形状复杂的基体,对基体无损伤,对ITO薄膜的大型产业化有非常重要的作用。
用溶胶- 凝胶法制备光电性具佳的ITO膜受到很多因素的影响,其中包括:掺Sn比例、金属离子浓度、提拉速度、烧制温度等。只有选择合适的掺Sn比例(12%左右) 、尽量大的金属离子浓度(约0.64M) 、适当的提拉速度、尽可能高的温度才能制备出优良的ITO膜。
ITO应用
ITO上游产业链是原材料靶材的制造技术,目的是为了获得内部均匀和密度较高的坯体,提高成形技术是提高ITO靶材产品质量的关键步骤。ITO靶材成形技术一般分为干法与湿法两种。干法成形本质上是一种模具压制的成形方法,易于实现自动化生产,而且在压力作用下批件的致密度很高,通常不需要进行干燥处理,ITO靶材的干法成形工艺主要有冷等静压成形、冲压成形、模压成形及爆炸成形等。湿法成形是采用溶液、固液混合物、气液混合物等原料进行反应,制备目标物质的过程。湿法工艺需要干燥处理,变形收缩较大,气孔较多,坯体致密度较低,但可以生产大尺寸及形状复杂的的靶材,通过合理的烧结工艺可以获得高稳定性、高均匀性及高密度的ITO靶材。ITO靶材的湿法工艺主要有挤压成形、凝胶注模成形及注浆成形等。
ITO下游产业主要是平板显示产业中的导电玻璃技术,即在钠钙基或硅硼基基片玻璃的基础上,镀上一层氧化铟锡膜加工制作成的。在平板显示产业中应用在触摸屏和液晶面板领域。触摸屏领域应用的是TP-ITO导电玻璃,而液晶面板领域应用的是LCD-ITO导电玻璃,两者的主要区别在LCD-ITO导电玻璃还会在镀ITO层之前,镀上一层二氧化硅阻挡层,以阻止基片玻璃上的钠离子向盒内液晶里扩散。
从国内外市场格局来看,日韩几乎垄断了透明导电膜市场,主要供应商有日东电工、尾池工业及帝人化成等。国内厂商逐渐向上游延伸,国内工艺日趋成熟,长信科技、南玻、康达克、莱宝高科和欧菲光等企业均有自己完整的产业链。
采用Incopat工具对ITO技术专利进行检索分析,得到该领域2000年至今的年申请量趋势图,各国ITO专利量分布,以及主要申请人申请数量排名。从图中可以看出,近二十年的时间里, ITO技术得到了飞速发展,相关的专利布局平均每年1000件以上的申请量,2013年达到了顶峰。与市场格局一致的是,日本仍旧占据了ITO相关专利技术的最大份额。同时值得庆幸的是国内申请人申请量排名第二,国内在透明导电薄膜领域涌现出了大量优质企业和科研单位,韩国和美国分列三、四位。企业排名方面,老牌半导体企业松下电器,三星电子,精工爱普生,LG电子,日立,东芝排名居前。
相比于其他透明导电薄膜材料,ITO在诸多方面略有不足,如ZnO薄膜具有成本低、无毒性、无污染的优势,但是由于对ZnO的研究起步相对较晚,光电性能整体较ITO薄膜差,目前还不能大规模取代ITO薄膜,所以在工业生产中应用最为广泛的仍是氧化铟基的 ITO 薄膜。
几十年来,针对ITO薄膜的研究主要集中在两方面:一种是ITO材料基础理论研究,涉及晶格常数与ITO薄膜光电性能之间的关系,最佳掺杂的优化和材料载流子上限的计算,ITO禁带宽度的改变等方向;另一方面,主要探索ITO制备方法,低成本的沉积技术有:溶胶-凝胶法、喷雾热解法和化学气相沉积,高质量的沉积技术包括:磁控溅射法、电子束蒸发法和脉冲激光沉积法。